LTE Advanced

Course No. 1434 Duration: 1 day

Course Overview:
The course dives into specifics of the LTE-Advanced PHY layer. A discussion of the main differences between LTE and LTE-Advanced is presented, followed by an in-depth discussion of the various implications of MIMO schemes and carrier aggregation on the downlink and uplink channels and signals within LTE-Advanced. The course ends with a review of the challenging problem of high-dimensionality MIMO detection which is highly important in LTE-Advanced.

Who should attend
The seminar is built for Technical, Marketing and Business Development people of the Telecom Service Providers as well as Manufacturers of LTE-Advanced equipment.

Prerequisite
Basic knowledge of telecommunications is expected from the participants, as well as familiarity with LTE.

Course Content:

1. Short Review of LTE (Releases 8 & 9)
2. LTE Advanced Requirements and Differences from LTE
 • Spectral Efficiencies, Max Throughput
 • UE Categories
 • HARQ & Memory Requirements
 • Competing Technologies (802.16m, 802.11ac)
3. Carrier Aggregation
 • Component Carriers (Primary, Secondary)
 • Downlink Control with Carrier Aggregation
 • Synchronization Issues
4. Downlink Transmission
 • MIMO Modes
 • Reference Signals with emphasis on new Signals (CSI, CRS, DM-RS)
 • Channel Estimation
 • Random Matrix Precoding
5. Uplink Transmission
 • New MIMO Modes
 • SORTD and Layer Shifting
 • Reference Signals and Orthogonal Cover Codes
 • The Significant Impact on Channel Estimation
 • Sounding & PUCCH - Multiple Antenna Transmission
6. Downlink Control
 • Implications of Carrier Aggregation
7. Uplink Control
 • New Control Formats
8. CQI & Link Adaptation
 • Implications of Large Order MIMO
 • Wideband & Narrowband Precoding
 • Precoder Selection
9. Coordinated Multi-Point (CoMP) Transmission and Reception
 • Joint Downlink Transmission
 • Joint Uplink Processing
 • Coordinated Scheduling/Beamforming
10. High Order MIMO Schemes
 • High Dimensionality OFDMA Detector for the Downlink
 • High Dimensionality SC-FDMA Detector for the Uplink
 • The SIC Assumption
11. Summary