Simulink for System and Algorithm Modeling

This course is for engineers who are new to system and algorithm modeling and design validation in Simulink®. It demonstrates how to apply basic modeling techniques and tools to develop Simulink block diagrams. Topics include:

- Creating and modifying Simulink models and simulate system dynamics
- Modeling continuous-time, discrete-time, and hybrid systems
- Modifying solver settings for simulation accuracy and speed
- Building hierarchy into a Simulink model
- Creating reusable model components using subsystems, libraries, and model references

Prerequisites
Knowledge of MATLAB basics.

1. **Introduction**
 Objective: Obtain a quick overview of The MathWorks and discuss course logistics.

2. **Introduction to System Modeling**
 Objective: Become familiar with system modeling in Simulink and the electronic throttle control system.
 - System modeling in the Simulink environment
 - Electronic throttle control model

3. **Creating and Simulating a Model**
 Objective: Create a simple Simulink model, run simulations, and analyze the results.
 - Define the potentiometer system
 - Become familiar with the Simulink interface
 - Create a Simulink model of the potentiometer system
 - Run simulations and analyze results

4. **Modeling Programming Constructs**
 Objective: Use Simulink to model and simulate basic programming constructs.
 - Model comparisons and decision statements
 - Create and use vector signals
 - Use the Embedded MATLAB Function block

5. **Modeling Discrete Systems**
 Objective: Use Simulink to model and simulate discrete systems.
 - Define discrete states
 - Create a model of a PI controller
 - Model discrete transfer functions and state space systems
 - Model multirate discrete systems

6. **Modeling Continuous Systems**
 Objective: Use Simulink to model and simulate continuous systems.
 - Define the throttle system
 - Create a model for the throttle system
 - Define continuous states
 - Run simulations and analyze results
 - Model impact dynamics

7. **Solver Selection**
 Objective: Select a solver that is appropriate for a given Simulink model.
 - Solver options
 - Discrete solvers
 - Continuous solvers
 - Zero-crossing detection
 - Algebraic loops

8. **Developing Model Hierarchy**
 Objective: Use subsystems to combine smaller systems into larger systems.
 - Subsystems
 - Bus signals
 - Masks

9. **Combining Models into Diagrams**
 Objective: Use model referencing to combine models.
 - Overview of model referencing and subsystems
 - Set up a model reference
 - Use model reference simulation modes
 - View signals in referenced models
 - Store parameters in referenced models

10. **Creating Libraries**
 Objective: Use libraries to create and distribute custom blocks.
 - Create new libraries
 - Create configurable subsystems
 - Add libraries to the Library Browser
 - Compare libraries and model references

11. **Introduction to Model-Based Design**
 Objective: Discuss how the Simulink environment can be used for Model-Based Design.
 - Traditional system design process
 - Model-Based Design in the Simulink environment

12. **Conclusion**
 Objective: Find resources for further information and training on the topic. Evaluate the class.
 - Resources
 - Related training courses
 - Evaluations