

How to Design a High-Speed Memory Interface

Course Description

This course teaches hardware designers who are new to high-speed memory I/O to design a memory interface in Xilinx FPGAs. It introduces designers to the basic concepts of high-speed memory I/O design, implementation, and debugging using 7 series FPGAs. Additionally, students will learn about the tools available for high-speed memory interface design, debug, and implementation of high-speed memory interfaces.

The major memory types covered are DDR2 and DDR3. The following memory types are covered on demand: RLDRAMII, LPDDR2, and QDRII+. Labs are available for DDR3 on the Kintex®-7 FPGA KC705 board.

Level: Connectivity 3 **Training Duration:** 2 days

Who Should Attend?

FPGA designers and logic designers

Prerequisites:

- VHDL or Verilog experience or Designing with VHDL or Designing with Verilog course
- Familiarity with logic design: state machines and synchronous design
- Very helpful to have:
 - Basic knowledge of FPGA architecture
 - · Familiarity with Xilinx implementation tools
- · Nice to have:
 - Familiarity with I/O basics
 - Familiarity with high-speed I/O standard

Software Tools:

- Vivado® System Edition 2015.1
- Mentor Graphics QuestaSim Advanced Simulator 10.3d
- Mentor Graphics HyperLynx SI 9.x

Hardware:

- Architecture: 7 series FPGAs*
- Demo board: Kintex-7 FPGA KC705 board*

Skills Gained: After completing this training, you will be able to:

- · Identify the FPGA resources required for memory interfaces
- Describe different types of memories
- Utilize Xilinx tools to generate memory interface designs
- Simulate memory interfaces with the Xilinx Vivado simulator
- Implement memory interfaces
- Identify the board design options for the realization of memory interfaces
- Test and debug your memory interface design
- Run basic memory interface signal integrity simulations

Course Outline

- 1. Course Introduction
- 2. 7 Series FPGAs Overview
- 3. Memory Devices Overview
- 4. 7 Series Memory Interface Resources
- 5. Memory Controller Details and Signals
- 6. MIG Design Generation
- 7. Lab 1: MIG Core Generation
- 8. MIG Design Simulation
- 9. Lab 2: MIG Design Simulation
- 10. MIG Design Implementation
- 11. Lab 3: MIG Design Implementation
- 12. Memory Interface Test and Debugging
- 13. Lab 4: MIG Design Debugging
- 14. MIG in Embedded Designs
- 15. Lab 5: MIG in IP Integrator
- 16. Memory Interface Board-Level Design
- 17. DDR3 PCB Simulation (optional)
- 18. Lab 6: DDR3 Signal Integrity Simulation (optional

Lab Description

Lab 1: MIG Core Generation — Create a DDR3 memory controller using the Memory Interface Generator (MIG) in the Vivado IP catalog. Customize the soft core memory controller for the board.

Lab 2: MIG Design Simulation — Simulate the memory controller created in Lab 1 using the Vivado simulator or Mentor Graphics QuestaSim simulator.

Lab 3: MIG Design Implementation – Implement the memory controller created in the previous labs. Modify constraints, synthesize, implement, create the bitstream, program the FPGA, and check the functionality.

Lab 4: MIG Design Debugging – Debug the memory interface design utilizing the Vivado logic analzyer.

Lab 5: MIG in IP Integrator — Use the block design editor to include the MIG IP in a given processor design.

Lab 6: DDR3 Signal Integrity Analysis – Learn basic signal analysis options to check waveforms and design optimization (optional).