

Designing FPGAs Using the Vivado Design Suite 2

Course Description

You will learn to build an effective FPGA design, utilizing the Vivado® IP integrator to create a sub-system, employing proper HDL coding techniques to improve design performance, Performing pin assignments, Applying basic timing constraints, Illustrating the advanced capabilities of the Vivado® logic analyzer to debug a design, Identifying advanced FPGA configurations, Debugging a design at the device startup phase

Level: FPGA 2

Training Duration: 4 days

Who Should Attend? – Digital designers who have a knowledge of HDL (VHDL or Verilog).

Prerequisites:

Basic HDL knowledge (Verilog or VHDL)

Digital design knowledge and experience (attendees should be electrical engineers)

Software Tools:

Vivado® Design Suite 2021.1

Skills Gained: After completing this training, you will have the necessary skills to:

- Create a Tcl script to create a project, add sources, and implement a design
- Describe and use the clock resources in a design
- Create and package your own IP and add to the Vivado IP catalog to reuse
- Use the Vivado IP integrator to create a block design
- Use the Vivado IDE I/O Planning layout to perform pin assignments
- Use the Xilinx Power Estimator (XPE) and Power Design

Manager (PDM) tools

Use the Schematic and Hierarchy viewers to analyze and

cross-probe a design

Use the Vivado logic analyzer and debug cores to debug a design

- Describe the Versal ACAP clocking architecture and hardware platform development using Vivado IP integrator
- Describe how power analysis and optimization is performed
- Describe the HDL instantiation flow of the Vivado logic analyzer
- Optimize HDL code to maximize the FPGA resources that are inferred and meet performance goals
- Describe how to enable remote debug
- Identify advanced FPGA configurations, such as daisy chains and gangs, for configuring multiple FPGAs in a design
- Debug a design at the device startup phase to debug issues related to startup events, such as MMCM lock and design coming out of reset

Course Outline:

1. Introduction to FPGAs

Provides an overview of FPGA architecture and describes the advantages, applications, and major building blocks of FPGAs.

2. Vivado Design Suite Project-Based Mode

Introduces project-based mode in the Vivado Design Suite, including creating a project, adding files to a project, exploring the Vivado IDE, and simulating a design

3. Vivado IP Flow.

Demonstrates how to customize IP, instantiate IP, and verify the hierarchy of your design IP

4. Basic Design Analysis in the Vivado IDE

Outlines the various design analysis features in the Vivado Design Suite

5. Introduction to Clock Constraints

Shows how to apply clock constraints and perform timing analysis

6. Timing Constraints Wizard

Reviews how use the Timing Constraints Wizard to apply missing timing constraints in a design

Vivado Design Suite I/O Pin Planning
 Describes the I/O Pin Planning layout for
 performing pin assignments in a design

8. Power Estimation Using XPE

Illustrates estimating the amount of resources and default activity rates for a design and evaluating the estimated power calculated by XPE

Power Analysis and Optimization Using the Vivado Design Suite

Illustrates using report power commands to estimate power consumption

10. Dynamic Power Estimation Using Vivado Report Power

Use a SAIF (switching activity interface format) file to determine accurate power consumption for a design

11. Power Management Techniques

Identify techniques used for low power design

12. Introduction to FPGA Configuration

Describes how FPGAs can be configured.

13. Configuration Process

Reviews the FPGA configuration process, such as device power up and CRC checks.

14. Configuration Modes

Understand various configuration modes and select the suitable mode for a design.

15. Daisy Chains and Gangs in Configuration Introduces advanced configuration schemes for multiple FPGAs

16 Bitstream Security

Understand the AMD Xilinx bitstream security features such as readback disable, bitstream encryption, and authentication

17. Introduction to the Vivado Logic Analyzer Provides an overview of the Vivado logic

analyzer for debugging a design.

18. Introduction to Triggering

Introduces the trigger capabilities of the Vivado logic analyzer.

19. Debug Cores

Describes how the debug hub core is used to connect debug cores in a design.

20. HDL Instantiation Debug Probing Flow.

Covers the HDL instantiation flow to create and instantiate a VIO core and observe its behavior using the Vivado logic analyzer

21. Netlist Insertion Debug Probing Flow

Covers the netlist insertion flow of the debug using the Vivado logic analyzer

22. JTAG to AXI Master Core

Use this debug core to write/read data to/from a peripheral connected to an AXI interface in a system that is running in hardware.

23. **Debug Flow in an IP Integrator Block Design** Insert the debug cores into IP integrator block

designs.

24. Remote Debugging Using the Vivado Logic Analyzer

Use trigger state machine code to trigger the ILA and capture data in the Vivado logic analyzer

25. Vivado Design Suite Debug Methodology Understand and follow the debug core recommendations. Employ the debug methodology for debugging a design using the Vivado logic analyzer.

26. **Trigger and Debug at Device Startup**Debug the events around the device startup.

27. Trigger Using the Trigger State Machine in the Vivado Logic Analyzer

Use trigger state machine code to trigger the ILA and capture data in the Vivado logic analyzer

28. Clock Structure and Layout in the UltraScale Architecture

Describes UltraScale clocking architecture and differences in the clocking architectures between 7 series and UltraScale FPGAs

29. Clock Buffers in the UltraScale Architecture Reviews the different clock buffers and clock migration.

30. Clock Management in the UltraScale Architecture

Highlights clock management resources.

31. Clock Routing in the UltraScale Architecture Describes clock routing, distribution, and the benefits of clock routing

32. UltraScale Architecture I/O Resources: Overview

Provides an overview of the I/O resources and I/O banks available the UltraScale architecture.

33. UltraScale Architecture I/O Resources:

Component Mode

Describes component mode, SelectIO™ interface logic, SERDES technology, and programmable delay lines.

34. UltraScale Architecture I/O Resources: Native Mode

Describes SelectIO interface logic, BITSLICE technology, native mode clocking, and the High Speed SelectIO Wizard.

35. Designing with the IP Integrator

Demonstrates how to use the Vivado IP integrator to create the uart led subsystem

36. Block Design Containers in the Vivado IP Integrator

Describes the block design container (BDC) feature and shows how to create a BDC in the IP integrator.

37. Creating and Packaging Custom IP

Covers creating your own IP and package and including it in the Vivado IP catalog

38. Using an IP Container

Illustrates how to use a core container file as a single file representation for an IP.

39. Versal ACAP: Clocking Architecture

Discusses the clocking architecture, clock buffers, clock routing, clock management functions, and clock de-skew in the Versal ACAP.

40. Inference

Infer AMD Xilinx dedicated hardware resources

by writing appropriate HDL code 41. Sampling and Capturing Data in Multiple **Clock Domains**

Overview of debugging a design with multiple

clock domains that require multiple ILAs 42. Revision Control Systems in the Vivado **Design Suite**

Use version control systems with Vivado design flows.